Emtelle UK Ltd.

Haughhead Hawick TD9 8LF United Kingdom
info@emtelle.com emtelle.com

Product Datasheet MHT 2643 Generic Specification Thickwall Microduct

FibreFlow

Product Description
Polyethylene microduct used as a fibre pathway, having enhanced performance when used for fibre blowing. Each microduct has performance as described below.
Microducts can be used individually or are combined and over-sheathed to give protected microduct assemblies for installation into the network.

Product Benefits				
	BLOWING DISTANCE $\mathrm{Nx} 100=2000 \mathrm{~m}$	EM-LINE		
Microducts are tested according to IEC 60794-5	Blowing track: up to 2000 m , route and fibre/cable dependent	Em-Liner for Low Friction and best blowing results	UV-Protection up to 2 years in EU	Pressure tight up to 15 bar

Microduct, POLYETHYLENE

- Extruded from 100% virgin material (no re-used PE content)
- Ribbed and smooth bore available.
- Inner surface coefficient friction max 0.1μ
- Identification: Microduct shall contain colour to aid identification, may also be striped. When used in an assembly, each microduct can be individually printed to further aid identification.

Outside Diameter (mm) nom	Inside Diameter (mm) nom	Weight (g/m)	Minimum Bend Radius $>5^{\circ} \mathrm{C}(\mathrm{mm})$	Minimum Bend Radius $\leq 5^{\circ} \mathrm{C}(\mathrm{mm})$	Maximum installation pull force (N)
5.0	2.5	14	65	100	200
7.0	4.0	25	70	120	200
7.0	3.5	28	70	120	220
8.0	5.0	29	80	140	220
8.0	4.0	36	80	140	270
8.0	3.5	39	80	140	300
10.0	6.0	48	100	180	320
12.0	8.0	60	120	240	400
14.0	10.0	71	140	300	500
16.0	12.0	84	160	320	580
16.0	10.0	117	160	320	820

Note 1: Diameters and thicknesses are measured to the nearest 0.1 mm unless otherwise stated.
Note 2: 'Nominal' data is based on mid-spec, and is for information only, not for inspection purposes.

Testing, Microduct	IEC 60794-1-2-Method E1	Procedure to IEC 60794-5
Tensile	IEC 60794-1-2-Method E3	Procedure to IEC 60794-5
Crush	IEC 60794-1-2-Method E4	Procedure to IEC 60794-5
Impact	IEC 60794-1-2-Method E10	Procedure to IEC 60794-5
Kink	IEC 60794-1-2-Method E11	Procedure to IEC 60794-5
Bend		
Testing, Material	$190^{\circ} \mathrm{C}-2.16 \mathrm{~kg}$	$0.16 \mathrm{~g} / 10$ minutes
	$190^{\circ} \mathrm{C}-5 \mathrm{~kg}$	$0.89 \mathrm{~g} / 10$ minutes
Melt Flow Rate (MFR)	$190^{\circ} \mathrm{C}-21.6 \mathrm{~kg}$	$23 \mathrm{~g} / 10$ minutes
Density		$0.958 \mathrm{~g} / \mathrm{cm}^{3}$
Tensile Stress at Yield		28 MPa
Tensile Stress at Break		$>600 \%$

