1.25Gb/s 1310nm Single-mode SFP Transceiver

Features

- Up to 1.25Gb/s data links , up to 10KM on 9/125um single mode fiber
- FP laser transmitter and PIN photo-detector
- Duplex LC/UPC type pluggable optical interface
- Metal enclosure, for lower EMI
- RoHS compliant and lead-free
- Compliant with SFF-8472, Support Digital
 Diagnostic Monitoring interface
- Single +3.3V power supply
- Case operating temperature

Commercial: 0°C to +70°C

Extended: -10°C to +80°C

Industrial: -40°C to +85°C

Applications

- Switch to Switch Interface
- Gigabit Ethernet
- Switched Backplane Applications
- Router/Server Interface
- Other Optical Links

1. GENERAL DESCRIPTION

Small Form Factor Pluggable (SFP) transceivers are compatible with the Small Form Factor Pluggable Multi-Sourcing Agreement (MSA). The transceiver consists of five sections: the LD driver, the limiting amplifier, the digital diagnostic monitor, the 1310nm FP laser and the PIN photo-detector .The module data link up to 10KM in 9/125um single mode fiber.

The optical output can be disabled by a TTL logic high-level input of Tx Disable, and the system also can disable the module via I2C. Tx Fault is provided to indicate that degradation of the laser. Loss of signal (LOS) output is provided to indicate the loss of an input optical signal of receiver or the link status with partner. The system can also get the LOS (or Link)/Disable/Fault information via I2C register access.

2. PROPOSED APPLICATION SCHEMATICS

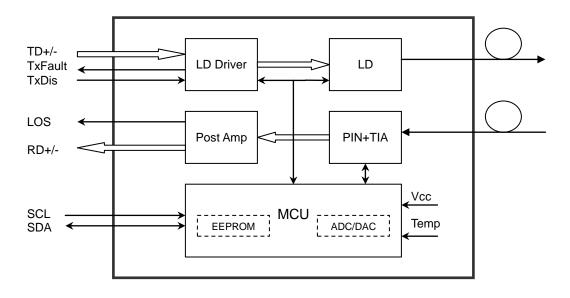


Figure 1. module block diagram

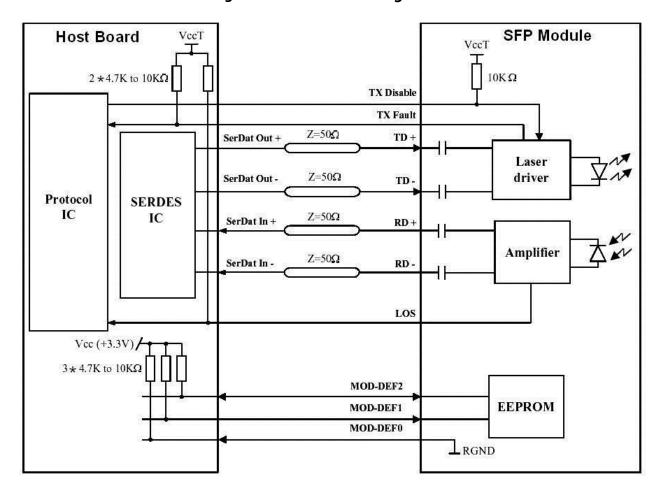


Figure 2. recommend circuit schematic

3. PIN DEFINITION

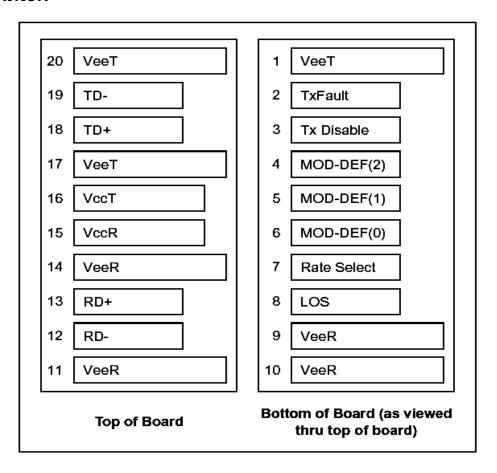


Figure 3. Pin out of Connector Block on Host Board

Pin	Symbol	Name/Description	NOTE
1	V _{EET}	Transmitter Ground (Common with Receiver Ground)	1
2	T _{FAULT}	Transmitter Fault.	
3	T _{DIS}	Transmitter Disable. Laser output disabled on high or open.	2
4	MOD_DEF(2)	Module Definition 2. Data line for Serial ID.	3
5	MOD_DEF(1)	Module Definition 1. Clock line for Serial ID.	3
6	MOD_DEF(0)	Module Definition 0. Grounded within the module.	3
7	Rate Select	No connection required	4
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation.	5
9	V _{EER}	Receiver Ground (Common with Transmitter Ground)	1
10	V _{EER}	Receiver Ground (Common with Transmitter Ground)	1
11	V _{EER}	Receiver Ground (Common with Transmitter Ground)	1

12	RD-	Receiver Inverted DATA out. AC Coupled	
13	RD+	Receiver Non-inverted DATA out. AC Coupled	
14	V_{EER}	Receiver Ground (Common with Transmitter Ground)	1
15	V_{CCR}	Receiver Power Supply	
16	V _{CCT}	Transmitter Power Supply	
17	V_{EET}	Transmitter Ground (Common with Receiver Ground)	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	V _{EET}	Transmitter Ground (Common with Receiver Ground)	1

Notes:

- 1. Circuit ground is internally isolated from chassis ground.
- 2. Laser output disabled on $T_{DIS} > 2.0V$ or open, enabled on $T_{DIS} < 0.8V$.
- 3. Should be pulled up with 4.7k 10kohms on host board to a voltage between 2.0V and 3.6V.MOD_DEF (0) pulls line low to indicate module is plugged in.
- 4. This is an optional input used to control the receiver bandwidth for compatibility with multiple data rates (most likely Fiber Channel 1x and 2x Rates). If implemented, the input will be internally pulled down with > $30k\Omega$ resistor. The input states are:

• Low (0 – 0.8V): Reduced Bandwidth

• (>0.8, < 2.0V): Undefined

• High (2.0 – 3.465V): Full Bandwidth

• Open: Reduced Bandwidth

5. LOS is open collector output should be pulled up with 4.7k - 10kohms on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

4. ABSOLUTE MAXIMUM RATING

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Storage Temperature	Ts	-40		85	°C	
Relative Humidity	RH	5		95	%	
Power Supply Voltage	VCC	-0.5		4	V	
Signal Input Voltage		-0.3		Vcc+0.3	V	
Receiver Damage Threshold		+5			dBm	

5. RECOMMENDED OPERATING ENVIRONMENT

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
		0		70		commercial
Case Operating Temperature	Tcase	-10		80	°C	extended
		-40		85		industrial
Power Supply Voltage	VCC	3.13	3.3	3.47	V	
Power Supply Current	ICC			280	mA	
Power Supply Noise Rejection				100	mVp-p	100Hz to 1MHz
Data Rate			1250/1250		Mbps	TX Rate/RX Rate
Transmission Distance				10	KM	
Coupled Fiber	Single mode fiber					9/125um SMF

6. OPTICAL CHARACTERISTICS

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Transmitter						
Average Output Power	P _{OUT}	-9		-3	dBm	Note (1)
Extinction Ratio	ER	9			dB	
Center Wavelength	λс	1270	1310	1360	nm	FP Laser
Spectrum Bandwidth(RMS)	σ			3.5	nm	
Transmitter OFF Output Power	P_{Off}			-45	dBm	
Differential Line Input Impedance	RIN	90	100	110	Ohm	
Output Eye Mask	Complia	nt with I	EEE802.3 z			
		laser s	afety)			
Receiver						
Input Optical Wavelength	λ _{IN}	1270		1610	nm	PIN-TIA
Receiver Sensitivity	P _{IN}			-20	dBm	Note (2)
Input Saturation Power (Overload)	P _{SAT}	-3			dBm	
Los Of Signal Assert	P _A			-22	dBm	
Los Of Signal De-assert	P _D	-35			dBm	Note (3)
LOS Hysteresis	P _A -P _D	0.5	2	6	dB	

- Note (1): Measure at 2^7-1 NRZ PRBS pattern.
- Note (2): Measured with Light source 1310nm, ER=9dB; BER = <10^-12 @PRBS=2^7-1 NRZ.
- Note (3): When SD De-Assert, the RX-LOS output is High-level (fixed).

7. DIGITAL DIAGNOSTIC FUNCTIONS

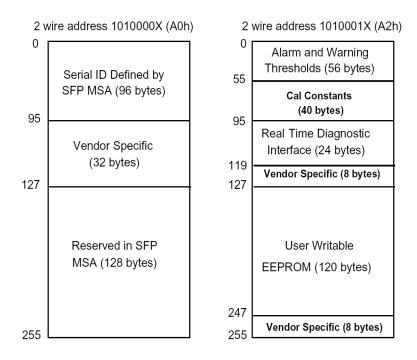
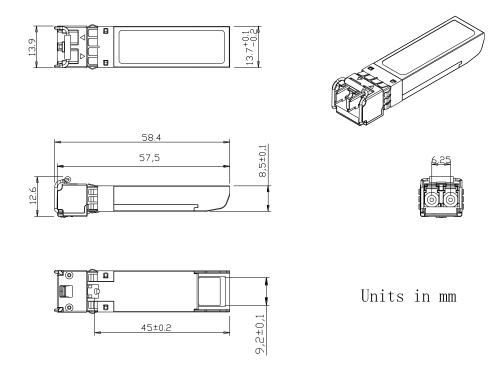


Figure 4. digital diagnostic memory map specific data field

The SFP MSA defines a 256-byte memory map in E2PROM that is accessible over a 2-wire serial interface at the 8 bit address 1010000X (A0h). The digital diagnostic monitoring interface makes use of the 8 bit address 1010001X (A2h), so the originally defined serial ID memory map remains unchanged. The interface is identical to, and is thus fully backward compatible with both the GBIC Specification and the SFP Multi Source Agreement.

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller (DDTC) inside the transceiver, which is accessed through a 2-wire serial interface. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.

Digital diagnostics for the transceivers are internally calibrated by default. The following digital diagnostic characteristics are defined over the Recommended Operating Environment unless otherwise specified


Parameter	Symbol	Min.	Max	Unit	Note
Temperature monitor absolute error	DMI_Temp	-3	3	°C	
Supply voltage monitor absolute error	DMI_VCC	-0.1	0.1	V	
Bias current monitor	DMI_Ibias	-10%	10%	mA	
Laser power monitor absolute error	DMI_TX	-3	3	dBm	
RX power monitor absolute error	DMI_RX	-3	3	dBm	

8. ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Transmitter						
Total Supply Current	I _{CC}			А	mA	Note (1)
Transmitter Disable Input-High	V_{DISH}	2		Vcc+0.3	V	
Transmitter Disable Input-Low	V _{DISL}	0		0.8	V	
Transmitter Fault Input-High	V_{TxFH}	2		Vcc+0.3	V	
Transmitter Fault Input-Low	V_{TxFL}	0		0.8	V	
Receiver						
Total Supply Current	I _{CC}			В	mA	Note (1)
LOSS Output Voltage-High	V_{LOSH}	2		Vcc+0.3	V	11/771
LOSS Output Voltage-Low	V _{LOSL}	0		0.8	V	LVTTL

Note (1): A (TX) + B(RX) = 280mA (Not include termination circuit)

9. MECHANICAL

10. REGULATORY COMPLIANCE

Feature	Reference	Performance	
Electrostatic discharge (ESD)	IEC/EN 61000-4-2	Compatible with standards	
Electromagnetic Interference (EMI)	FCC Part 15 Class B EN 55022 Class	Compatible with standards	
Liectromagnetic interference (Livii)	B (CISPR 22A)	Compatible with standards	
Laser Eye Safety	FDA 21CFR 1040.10, 1040.11 IEC/EN	Class 1 laser product	
Laser Lye Salety	60825-1 , 2	Class I laser product	
Component Recognition	IEC/EN 60950 , UL	Compatible with standards	
ROHS	2002/95/EC	Compatible with standards	
EMC	EN61000-3	Compatible with standards	